Boosting Based Conditional Quantile Estimation for Regression and Binary Classification
نویسنده
چکیده
We introduce Quantile Boost (QBoost) algorithms which predict conditional quantiles of the interested response for regression and binary classification. Quantile Boost Regression (QBR) performs gradient descent in functional space to minimize the objective function used by quantile regression (QReg). In the classification scenario, the class label is defined via a hidden variable, and the quantiles of the class label are estimated by fitting the corresponding quantiles of the hidden variable. An equivalent form of the definition of quantile is introduced, whose smoothed version is employed as the objective function, which is maximized by gradient ascent in functional space to get the Quantile Boost Classification (QBC) algorithm. Extensive experiments show that QBoost performs better than the original QReg and other alternatives for regression and classification. Furthermore, QBoost is more robust to noisy predictors.
منابع مشابه
Conditional Quantile Estimation for Garch Models
Conditional quantile estimation is an essential ingredient in modern risk management. Although GARCH processes have proven highly successful in modeling financial data it is generally recognized that it would be useful to consider a broader class of processes capable of representing more flexibly both asymmetry and tail behavior of conditional returns distributions. In this paper, we study esti...
متن کاملQBoost: Predicting quantiles with boosting for regression and binary classification
0957-4174/$ see front matter 2011 Elsevier Ltd. A doi:10.1016/j.eswa.2011.06.060 ⇑ Tel.: +1 417 836 6037; fax: +1 417 836 6966. E-mail address: [email protected] In the framework of functional gradient descent/ascent, this paper proposes Quantile Boost (QBoost) algorithms which predict quantiles of the interested response for regression and binary classification. Quantile Boost Re...
متن کاملThe Second-order Bias and MSE of Quantile Estimators
The finite sample theory using higher order asymptotics provides better approximations of the bias and mean squared error (MSE) for a class of estimators. However, no finite sample theory result is available for the quantile regression and the literature on the quantile regression has been entirely on the first-order asymptotic theory. This paper develops new analytical results on the second-or...
متن کاملBoosted Classification Trees and Class Probability/Quantile Estimation
The standard by which binary classifiers are usually judged, misclassification error, assumes equal costs of misclassifying the two classes or, equivalently, classifying at the 1/2 quantile of the conditional class probability function P[y = 1|x]. Boosted classification trees are known to perform quite well for such problems. In this article we consider the use of standard, off-the-shelf boosti...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کامل